Welcome to the IOblend blog page. We are the creators of the IOblend real-time data integration and advanced DataOps solution.
Over the many (many!) years, we have gained experience and insight from the world of data, especially in the data engineering and data management areas. Data challenges are everywhere and happen daily. We are sure, most of you, data folks, are well versed in them. In fact, we will venture to say that you spend over three quarters of your time dealing with them.
You encounter data challenges when doing system integrations, cloud/prem/edge dataflow development, analytical dashboards implementation, master data services creation, data warehousing projects, etc. Throw in various systems, various stakeholders and tech from different eras, all contributing to your data headaches. Then add to the hassles the overbearing red tape and a heavy-handed procurement and you got yourself an enterprise-grade pile of tech and processes that are truly hard to get a handle on. If you needed to start a new large-scale data project in that environment? Well, it will likely be a daunting undertaking…
Most of these challenges are caused by the cumbersome efforts with data engineering and data management. Think about it, these initiatives include data, or rather flows of data from the source to destination (and transformations in between). If you are unable to do solid data engineering in all your projects, bad data issues inevitably unravel later. Bad data means bad decisions. You absolutely have to get the dataflow design and oversight right, but that is the tricky part – data engineering and data management are hard and resource-consuming.
Ideally, you should implement DataOps, which is the concept that unites best practice data engineering and data management under one umbrella. It is by far the best approach to eliminate data issues and give you the most robust data estate, but DataOps too is a high effort job, requiring skilled engineers to deliver it.
If only there were a simple tool that could make DataOps a ‘walk in the park’
There had to be a better way to work with data and data estates, where we could deliver robust data to your organisations and empower your data citizens to work with very complex data management techniques without necessarily having advanced knowledge of data engineering concepts.
We did find that way, in case you were wondering, and you can read more about it here.
What we want to do in this section is to share some of the best practice, tips and tricks, or just cool ways of doing things with DataOps (and our platform, naturally). We want to show you a different perspective on doing things you do every day simpler and better. But we do not want to make the blog overly taxing to digest or deeply technical (that would defeat the whole purpose of what we are promoting!)
We strongly believe solid data engineering and management foundations are the way of the future when it comes to data management practices, especially relevant when working with Big Data, IoT, AI/ML and operational analytics applications. If you have data flowing through your systems, apps, dashboards, etc., we urge you to explore the power of IOblend DataOps. You will be surprised why you haven’t done it earlier.
Stay well and safe and watch this space for updates!
Unlock new capabilities with real time ACARS data
In this short article we are looking at one of the key data sources for the aviation industry – ACARS – and how IOblend helps to unlock new analytical capabilities from it.
Time to automate your airline’s DOC data
How to automate Direct Operating Cost (DOC) data collection, processing and serving with IOblend.
Automate airline fuel data collection & management
Collecting and managing airline fuel data is complex and time consuming. IOblend can greatly streamline the process and enable real-time decisioning.
The Data Mesh Gotchas!
I think most practitioners in the data world would agree that the core data mesh principles of decentralisation to improve data enablement are sound. Originally penned by Zhamak Dehghani, Data Mesh architecture is attracting a lot of attention, and rightly so. However, there is a growing concern in the data industry regarding how the data
IOblend Data Mesh
IOblend Data Mesh – power to the data people! Analyst engineering made simple Hello folks, IOblend here. Hope you are all keeping well. Companies are increasingly leaning towards self-service data authoring. Why, you ask? It is because the prevailing monolithic data architecture (no matter how advanced) does not condone an easy way to manage the
Data lineage is a “must have”, not “nice to have”
Hello folks, IOblend here. Hope you are all keeping well. There is one thing that has been bugging us recently, which led to the writing of this blog. While working on several data projects with some of our clients, we observed instances when data lineage had not been implemented as part of the solutions. In